

METHOD-OF-MOMENTS SOLUTION FOR THE POSTS IN A CIRCULAR WAVEGUIDE

Zhu Xiao-hui, Chen Dai-zong, and Wang Shi-jin

Beijing Institute of Radio Measurement, P. O. Box 3923, Beijing, China

Abstract—A three-dimensional discontinuity problem of a pair of metallic posts with finite diameter in the TE₁₁-mode circular waveguide is solved by method of moments. Unlike the widely used multifilament representation which leads to a slowly converging series, a multi-strip representation is introduced for the post current modeling. Numerical results are compared with experimental data, including those given by the other authors.

Introduction

In circular waveguide, the concentric discontinuities have been studied by many authors, but the studies of non-axisymmetric discontinuities, especially those with finite thickness, are very scarce. The purpose of this paper is to develop a method-of-moments solution for electromagnetic scattering by a pair of perfectly conducting posts in a TE₁₁-mode circular waveguide, as shown in Fig.1, and to compute the parameters of equivalent circuit shown in Fig.2. The difficulty of our problem lies in the absence of coincidence of post surface with the cylindrical coordinate lines so that all possible higher order modes must be taken into account. Multifilament current representation leads to a slowly converging series which is not convenient for computation when the field on the post surface is expanded in terms of waveguide

modes. In rectangular waveguide, this series can be converted to a rapidly converging one by introducing certain auxiliary series, as a result, multifilament approximation has been widely used for post, or probe, problems(1),(2). For circular waveguide posts, such an auxiliary series is difficult to find, so we try a new approach to post current modeling and a multi-strip representation is proposed. The true currents on post surfaces are replaced by equivalent planar currents inside the posts in a number of waveguide cross sections, i.e. xy planes, then the unknown planar currents are expanded in the xy planes. By using expansion- and testing functions chosen properly and field matching along generatrix lines of posts, the convergence of the series can be improved to a certain extent so that the numerical calculation goes to feasible.

Formulation of the problem

Consider the case of two strips and four-term expansion. As shown in Fig.3, the equivalent currents on the imaginary strips can be expressed as

$$\bar{J}(x, y) = \begin{cases} \hat{x} \sum_{i=1}^4 I_i F_i(x, y) & \text{on } \sigma^- \\ \hat{x} \sum_{i=5}^8 I_i F_i(x, y) & \text{on } \sigma^+ \end{cases} \quad (1)$$

where

$$F_i(x, y) = \psi_i(x) \varphi_i(y) \quad (2)$$

$$\psi_1 = \psi_3 = \psi_5 = \psi_7 \quad \psi_2 = \psi_4 = \psi_6 = \psi_8$$

$$\varphi_1 = \varphi_2 = \varphi_5 = \varphi_6 \quad \varphi_3 = \varphi_4 = \varphi_7 = \varphi_8$$

$$\psi_1(x) = \sin k w \quad (3a)$$

$$\psi_2(x) = \alpha (1 - \cos k w) - \sin k w \quad (3b)$$

$$\alpha = \frac{k l - \sin k l \cos k l}{(1 - \cos k l)^2} \quad w = x - a + l$$

$$\varphi_1(y) = \frac{1}{b} \quad \varphi_3(y) = \frac{\pi}{2b} \cos \frac{\pi y}{b} - \frac{1}{b} \quad (4)$$

Here a is the waveguide radius, l is the post length and b is the strip width. The constant α makes ψ_1 and ψ_2 orthogonal to one another in the interval $0 < w < l$ (2):

$$\int_0^l \psi_1(x) \psi_2(x) dw = 0 \quad (5)$$

Similar orthogonality is held for φ_1 and φ_3 :

$$\int_{-b/2}^{b/2} \varphi_1(y) \varphi_3(y) dy = 0 \quad (6)$$

The strips σ^- and σ^+ must be inside the post of diameter d , so we have

$$0 < c < d/2 \quad (7)$$

$$0 < b \leq (d^2 - 4c^2)^{1/2} \quad (8)$$

Six testing generatrix lines are uniformly distributed on the post surface. Symmetry shows that only four lines (1,2,3 and 4) need to be tested. The $\psi_i(x)$ of Eq.(3) are used as the testing functions and the following matrix equation is obtained

$$ZI = V \quad (9)$$

where

$$Z_{ij} = - \int_0^{L(y_i)} \bar{A}_j(x, y_i, z_i) \cdot \hat{x} \psi_i(x) dw \quad (10)$$

$$V_i = \int_0^{L(y_i)} \bar{E}^{inc}(x, y_i, z_i) \cdot \hat{x} \psi_i(x) dw \quad (11)$$

$$\bar{A}_j(x, y, z) \cdot \hat{x} = - \sum_p e^{-\gamma_p |x - x_j|} \bar{e}_p(x, y) \cdot \hat{x} \cdot$$

$$\int_{-b/2}^{b/2} \int_0^{L(y)} \bar{e}_p(x', y') \cdot \hat{x} F_j(x', y') dw dy' \quad (12)$$

$$L(y) = l - a + (a^2 - y^2)^{1/2}$$

The \bar{e}_p is normalized transverse electric field of the

p -th mode and γ_p is the propagation constant. It is vitally important to consider all the possible TE₁₁ and TM_{nq} modes in the summation of (12). Careful analysis of field distribution indicates that only the modes with $\cos n\varphi$ variations in radial electric components can be excited when both the posts and the incident TE₁₁ mode are x -oriented, and then only the TE_{nq} and TM_{nq} modes with odd index n are needed because the $x=0$ plane is an electric wall. The symmetry of posts about the $z=0$ plane suggests that the even- and odd-excitation can be treated separately so the 8-order matrix equation (9) can be decomposed into two of the 4-order equations, but the condition of the matrix in Eq.(9) has been greatly improved by orthogonality of (5) and (6) and such a decomposition is not important.

Numerical results and discussion

A computer program has been developed to carry out the solution procedure. To test the convergence of the moment solution, the higher order modes in the summation of (12) can be specified. Typical dimensional parameters ($0.2930 < a/\lambda < 0.3827$, $0.02 < d/\lambda < 0.1$, $l/a < 0.5$) are used for trial computations. It is found that TE_{n1}, TE_{n2}, and TM_{n1}, TM_{n2}, TM_{n3} make a significant contribution to the matrix elements. The contribution of the TM_{nq} with $q > 3$ is found to be small, and the TE_{nq} with $q > 2$ can be ignored. Summation over modes corresponding to black blocks in Fig.4 gives a certain accurate values of circuit parameters X_a and X_b with the unitary-condition error of scattering matrix less than 0.001, while the white blocks correspond to the first 700 modes given by Beattie(3). If all modes with $n > 29$ are neglected, typical truncation error for X_a is less than 0.03.

The equivalent circuit parameters are insensitive to the location c and the width b of strips except the values close to the limits of (7) or (8). The input VSWR of post-loaded circular waveguide with $a = 26.9\text{mm}$, $l = 9.11\text{mm}$ and $d = 4.0\text{mm}$ has been tested and calculated. Both the experimental and theoretical results are shown in Fig.5. A comparison between numerical results and measured data given by Ishida et.al. (4) for the post susceptance B ($= -1/X_a$) is given in Fig.6. Calculated values of X_a and X_b for $a/\lambda = 0.321$ and 0.355 are shown in Fig.7.

The results obtained in this paper can be used to analysis of circular waveguide devices such as polarizers and filters. The multi-strip current modeling should prove useful in solving a variety of circular waveguide discontinuities with finite thickness and without axisymmetry.

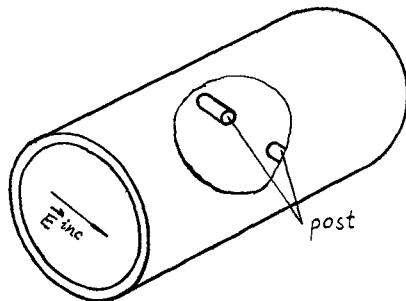


Fig.1 A pair of posts in circular waveguide

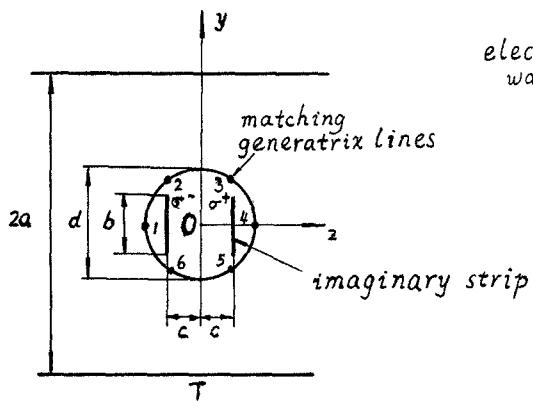


Fig.3 Multi-strip current modeling

References

- (1) Y.Levitan, P.G.Li, A.Adams and J.Rerini, "Single-post Inductive Obstacle in Rectangular Waveguide", IEEE, Trans. Microwave Theory Tech., Vol.MTT-31, No.10, pp.806-812, 1983.
- (2) J.M.Jarem, "A Multifilament Method-of-Moments Solution for the Input Impedance of a Probe-Excited Semi-Infinite Waveguide", IEEE, Trans. Microwave Theory Tech., Vol.35, No.1, pp.14-19, 1987.
- (3) C.L.Battie, "Table of First 700 Zeros of Bessel Function $J_l(X)$ and $J_l'(X)$ ", BSTJ, Vol.37, No.3, pp.689-697, 1958.
- (4) O.Ishida, S.Kaniya and F.Takeda, "A Design Method of Polarizer Using Metallic Posts", Technical Report of the Institute of Electronics and Communication Engineers of Japan, Vol.78, No.178, MW78-83, Sept.24, 1978.

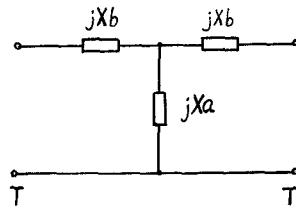
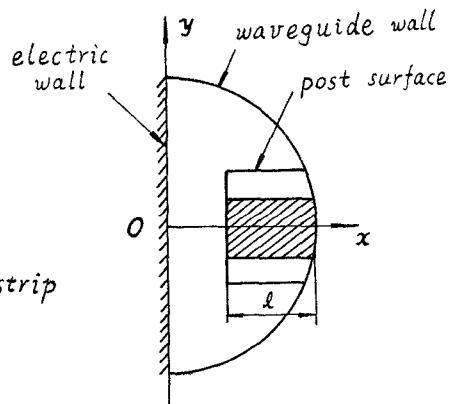



Fig.2 Equivalent circuit for posts

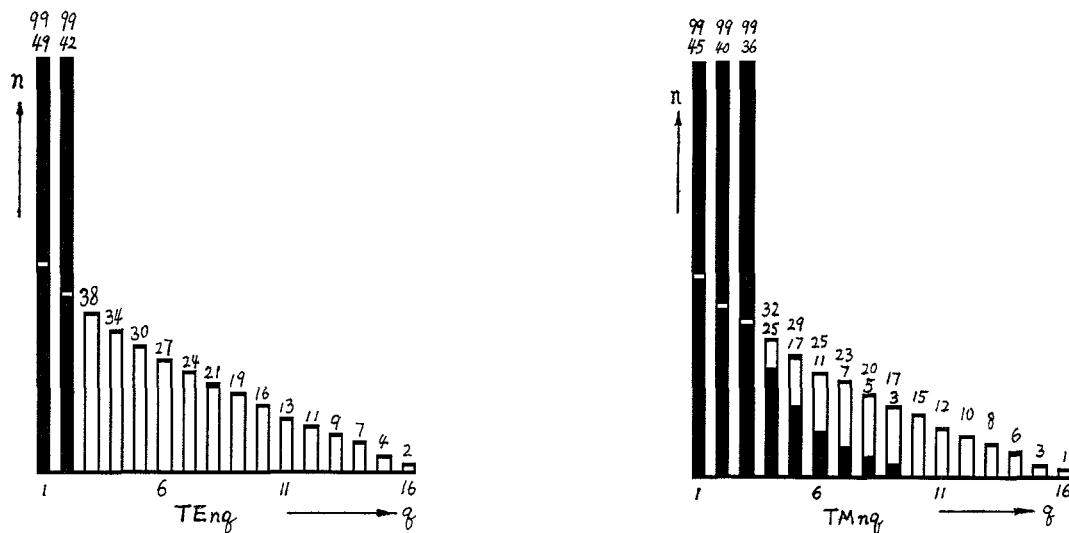


Fig.4 Higher order modes considered in summation of (12)

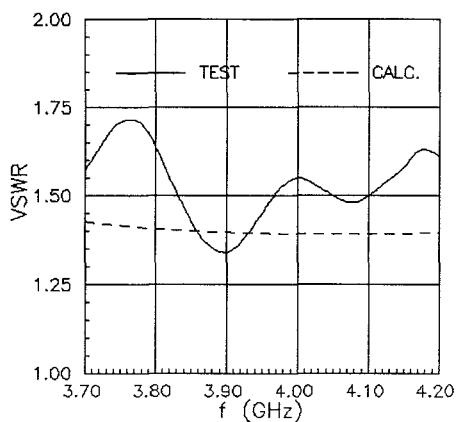


Fig.5 Variation of VSWR versus frequency

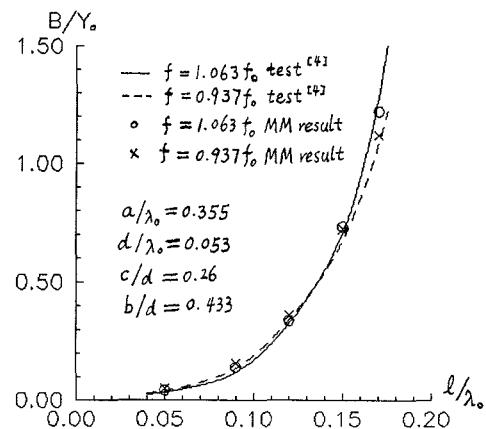


Fig.6 Equivalent susceptance of posts

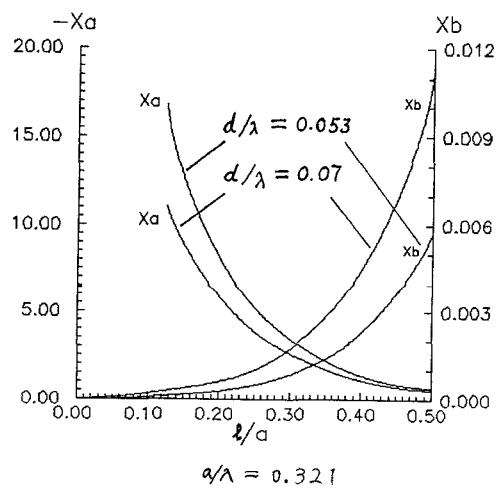
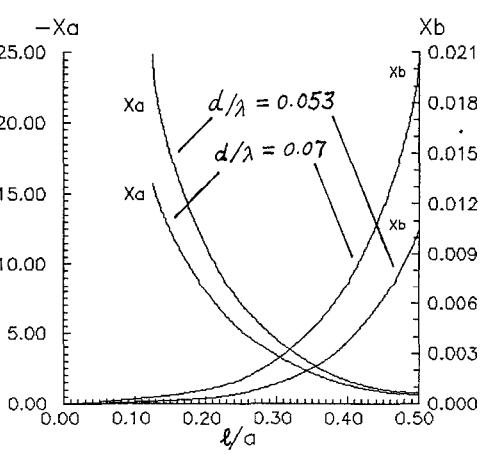



Fig.7 Calculated values of circuit parameters ($c/d=0.26$, $b/d=0.433$)

